» Idő pénz érték: jelen és jövő érték


Kezdeti adatok




Fizetési mód



Pénzforgalom (C)

Éves kamatláb (r)
%

Éves növekedési ütem (g)
%

Időszak (t)




Eredmény


 

Lásd még:

 

Jelenlegi érték (PV)


\begin{align} PV_{Annuity\; Due}&=C \times \left[\frac{1-(1+\frac{r}{n})^{-t}}{\frac{r}{n}}\right]\times(1+\frac{r}{n})\\ PV_{Ordinary\; Annuity}&=C \times \left[\frac{1-(1+\frac{r}{n})^{-t}}{\frac{r}{n}}\right]\\ PV&=\frac {C_{t}}{(1+\frac{r}{n})^{t}} \end{align}


Jövőbeli érték (FV)


\begin{align} FV_{Annuity\; Due}&=C \times \left[\frac{(1+\frac{r}{n})^{t}-1}{\frac{r}{n}}\right]\times (1+\frac{r}{n})\\ FV_{Ordinary\; Annuity}&=C \times \left[\frac{(1+\frac{r}{n})^{t}-1}{\frac{r}{n}}\right]\\ FV&=C_{0}\times (1+\frac{r}{n})^{t}\\ \end{align}